
1. Introduction
Large megathrust earthquakes on the subduction interface extend from near-trench to depths and display very 
different depth-varying slip behaviors (Lay et al., 2012). Large earthquakes that rupture the shallowest portion of 
the subduction interface (<15 km) can generate devastating tsunamis, but they appear to rupture slowly with in-
efficient excitation of short-period seismic waves disproportionately to their seismic moment and tsunami. These 
earthquakes are “tsunami earthquakes” (Kanamori, 1972). At deeper depths (15–50 km), large thrust earthquakes 
have faster rupture velocities and stronger radiation of short-period seismic energy with inefficient tsunami gen-
eration. Their contrasting rupture characteristics are well interpreted by two distinct types of fault properties; the 
slow slip of shallow tsunami earthquakes is commonly attributed to weak sediments and low rigidity of the upper 
plate (Bilek & Lay, 1999; Prada et al., 2021; Sallarès & Ranero, 2019), while the brittle failures of unstable fault 
patches explain the fast deeper earthquakes.

On 12 August 2021, a great earthquake (Mw > 8) struck the South Sandwich Island region of the south Atlantic 
Ocean (Figure 1a). This event occurred close to the South Sandwich trench, where the South American plate 
subducts beneath the South Sandwich plate at a velocity of 7 cm/year (Pelayo & Wiens, 1989). A remarkable 
observation of this earthquake is its far reaching-tsunamis. The tsunamis spread to the north Atlantic, Pacific, 
and Indian Oceans, where tide gauges measured peak amplitudes of ∼20 cm at over 10,000 km distance from 
the source (Figure S1 in Supporting Information S1). Although modeling these tide gauge observations is chal-
lenging because of the lack of detailed bathymetry data between the source and gauges, the observed tsunamis at 
global distances appear to suggest that the South Sandwich Island earthquake could be categorized as a regular 
shallow tsunamigenic earthquake.

However, the South Sandwich Island earthquake seems to have extended to large depths with a complex temporal 
history. The early report (PDE) from the National Earthquake Information Center (NEIC) of the US Geological 
Survey listed two events within 3 min: (a) NEIC1, At 18:32:52 (UTC; 25.03°W, 57.68°S, Depth = 47.2 km, 
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Mw = 7.5) and (b) NEIC2, At 18:35:17 (25.26°W, 58.38°S, Depth = 22.8 km, Mw = 8.1). In this paper, we 
call collectively the earthquake sequence which started at 18:32:52 (UTC) and lasted for about 300 s, the 2021 
South Sandwich Island earthquake, and we refer the first (NEIC1) and second (NEIC2) events as the foreshock 
and the mainshock, respectively. The Global Centroid Moment Tensor Project (GCMT) (Ekström et al., 2012) 
reported two events: (a) GCMT1 (202108121832A, centroid time: 18:35:25, Mw  =  8.3, 24.34°W, 59.48°S, 
depth = 20.0 km) and (b) GCMT2 (202108121835A, centroid time: 18:36:13, Mw = 7.9, 25.15°W, 60.47°S, 
depth = 15.1 km). USGS NEIC also reported a moment tensor solution at the centroid time around 18:36 with 
Mwc = 7.98 and depth = 10 km with an alternative solution with Mww = 8.13 and depth = 35.5 km (more details in 
Table S1 in Supporting Information S1). Given the variability of these solutions, we attempted W-phase inversion 
(Kanamori and Rivera, 2008). Because of the complex interference of the waveforms of several events, only with 
a very narrow long-period pass band (0.00125–0.002 Hz, i.e., 500–800 s), we could obtain a solution that can fit 
long-period waveforms satisfactorily for 40 stations (more details in Text S1, Figures S2 and S3 in Supporting 
Information S1).

The depths reported by different catalogs range from 10 to 50 km, and the hypocenters scatter around the Slab 2.0 
(Hayes et al., 2018) interface (Figure 1b). This is probably caused by difficulty in locating the events accurately, 
due to the complex interference of seismic waves from the foreshock and mainshock. Nevertheless, the deeper 
depths of the South Sandwich Island earthquake appear to contradict the shallow slip inferred from the glob-
al-spreading tsunami. While detailed rupture analyses would be needed to understand this disparity, it is difficult 
to define a physical fault plane for slip inversions due to the diverse locations and focal mechanisms from differ-
ent sources (Figure 1). In addition, the aftershocks extend ∼400 km along the curved subduction zone, making a 
planar fault unphysical. Thus, we need to analyze the rupture properties of this earthquake with flexibility in fault 
geometries, while maintaining the depth-dependent complexities.

In this study, we first investigate the overall spectral characteristics of the event. Then, we determine the kin-
ematic rupture process with a multiple subevent inversion of broad-band seismic waveforms, and evaluate the 
contributions of subevents and discuss their relationships.

Figure 1. Overview of the tectonic setting and seismicity. (a) Tectonics of the South Sandwich region. The Mw 7.5 foreshock 
(green star) and the Mw 8.1 mainshock (red star) occurred close to the South Sandwich Trench, where the South America 
Plate subducts under the South Sandwich Plate. Yellow circles show the background seismicity according to the ISC catalog. 
Orange circles indicate the aftershocks within 2 weeks of the South Sandwich event. The beachballs display our W-phase 
moment tensor (in blue), USGS NEIC Mwc, Mww, and two Global CMT solutions (in gray). (b) Cross-sections along the black 
line segments in (a). The orange dots indicate the aftershocks within 100 km of the profiles. The black line represents the Slab 
2.0 interface. Beachballs and stars are the same as (a), but for side view.
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2. General Spectral Characteristics
Given the complex rupture characteristics of the 2021 South Sandwich Island earthquake, we first investigate 
this event using three magnitude scales, mB, MS, and Mw. Although mB and MS are old somewhat qualitative 
parameters, they are available for global earthquakes and useful for understanding the spectral characteristics of 
the South Sandwich Island sequence in global context. To the first order, mB, MS, and Mw represent the spectral 
amplitudes of the sequence at about 4, 20, and 200 s or even longer period.

2.1. mB Versus Mw Relationship

For the measurement of mB, we used the method described in Kanamori and Ross (2019) which follows the meth-
od developed by Gutenberg and Richter (1956). We used the vertical component P-waves recorded at 54 global 
network stations (epicentral distance of 30°–80°, Figure S4 in Supporting Information S1), which include peak 
amplitudes for the mainshock. The medians of station mB are 6.87 and 7.10 for the foreshock and the mainshock, 
respectively. Figure 2a compares the mB–Mw relationship for these events with the mB values of about 3,000 
events with Mw ≥ 6 for a period from 1988 to 2018 taken from Kanamori and Ross (2019). The mB data for the 
global events shown by small dots represent the range for ensemble of global events. The mB for the mainshock 
is probably the upper bound because the time window for the mB measurements contains some energy from the 
foreshock, only 145 s earlier. The mB values for the foreshock and the mainshock are 0.4 and 0.6 mB unit, respec-
tively, smaller than the average global mB–Mw trend; this indicates that these events, especially the mainshock, are 
deficient in short-period energy.

2.2. MS Versus Mw Relationship

We made a similar comparison of MS versus Mw relationship. We computed MS using 20 s surface waves from 483 
global seismic stations (distance range of 30°–120°), and measured the peak ground motion amplitudes. Since 
the surface waves of the foreshock and mainshock overlap, we could not measure MS for each event separately, 
and obtained just one MS = 7.68 (Figure S5 in Supporting Information S1). Compared with the empirical global 

Figure 2. mB and MS measurements for the South Sandwich Island sequence. (a) Body wave magnitude mB for the Mw 7.5 
foreshock (green star) and the Mw 8.1 mainshock (red star). The solid yellow line indicates the general trend, mB = 0.75 
Mw + 1.63 (Kanamori & Ross, 2019), which is regressed from the database of global earthquakes for the period 1988–2018 
(black circles). (b) Surface wave magnitude MS for the sequence. The solid yellow line shows the empirical relation, 
Mw = exp(−0.222 + 0.233MS) + 2.863, regressed from the historical earthquakes (black circles) in the GCMT catalog (Di 
Giacomo et al., 2015).
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MS–Mw relationship (Di Giacomo et al., 2015) from the ISC MS data set (ISC, 2021), the observed MS is 0.5 
smaller than the average trend (Figure 2b).

The smaller mB and MS than the global average trends indicate depleted seismic energy release at short periods 
and slow rupturing characteristics (Kanamori, 1972; Kanamori & Ross, 2019). As shown in Figures 2a and 2b, 
the South Sandwich Island earthquake is among the biggest outliers from the general trend. Other anomalous 
events similar to the South Sandwich Island earthquake includes the 1992 Nicaragua Mw 7.6, the 1994 Java Mw 
7.8, the1996 Peru Mw 7.5, the 2006 Mw 7.7 Java, and the 2010 Mw 7.8 Mentawai Island earthquakes, all of which 
are well-known shallow slow tsunami earthquakes. This similarity suggests that the South Sandwich Island earth-
quake probably involved a substantial slow rupture component at the shallow subduction interface.

3. Multiple Subevent Inversion
To image the detailed rupture process of the earthquake, we applied the multiple subevent inversion method. 
Our subevent inversion algorithm represents a complex rupture with multiple simpler sources, each of which 
can have different timings, locations, source durations and focal mechanisms (Jia, Shen, et al., 2020; Jia, Wang, 
& Zhan, 2020; Ross et al., 2019; Zhan et al., 2014). This simple parameterization allows flexible representation 
of time history and fault geometries, thereby capturing the first-order spatiotemporal rupture complexities. Our 
subevent method is particularly suitable for describing the South Sandwich Island earthquake which contains at 
least two major events in 3 min and involves potential fault geometry variations along the curved South Sandwich 
trench. As the possible slow rupture may propagate long distance with strong directivity effects, we introduce a 
finite subevent with a unilateral Haskell rupture model with a constant rupture velocity (Haskell, 1964). In this 
study, we use the Haskell model only for the long duration (>100 s) subevent with potentially significant rupture 
directivity. We applied a Markov Chain Monte Carlo inversion in a Bayesian framework, and increased the num-
ber of subevents iteratively until the waveforms fit well (Text S2 in Supporting Information S1 for more details).

We collected 58 teleseismic (distance of 30°–90°) P velocity and displacement records, 43 teleseismic SH dis-
placement records, and 12 three-component regional (distance within 40°) full waveforms in displacement (Fig-
ure S6 in Supporting Information S1) for the subevent inversion. We removed their instrumental responses, and 
filtered the P and SH waves between 0.005 and 0.05 Hz for modeling short period features. For the regional full 
waves, we used them in two datasets with different filter bands. One of them with a 0.002–0.02 Hz passband rep-
resents intermediate period waves, and the other with 0.002–0.0033 Hz, long period motions. This combination 
of short, intermediate and long period bands allows mapping the ruptures of different length scales simultane-
ously. The teleseismic Green's functions are calculated combining the propagator matrix method and plane wave 
approximation (Kikuchi & Kanamori, 1991; Qian et al., 2017), using the CRUST 2.0 (Laske et al., 2001) model 
at the source region and the IASPEI91 model (Kennet, 1991) at other places. The regional full-wave synthetics 
are computed with a frequency-wavenumber integration algorithm (Zhu & Rivera, 2002), using the PREM model 
(Dziewonski & Anderson, 1981).

Our subevent model consists of five subevents that span ∼300 km along the trench (Figure 3, Table S2 in Support-
ing Information S1). We fixed the first subevent at the NEIC Mw 7.5 event hypocenter. Data fittings (Figure 3c, 
Figure S7 in Supporting Information S1) and model uncertainties (Figure 3b, Figure S8 in Supporting Infor-
mation S1) suggest that the source parameters are well constrained. The rupture begins with two short-duration 
subevents E1 (centroid time τC = 13s after the origin time, duration dC = 23s, Mw 7.2) and E2 (τC = 36s, dC = 19s, 
Mw 7.2), which in total (Mw 7.4) generally represents the NEIC Mw 7.5 foreshock. They have close locations and 
similar shallow dipping thrust focal mechanisms (average strike/dip/rake = 157°/18°/82°), but the centroid depth 
of E1 is deep (39 km) while E2 is shallow (7 km), suggesting an updip rupture propagation along the plate inter-
face. They are located near a patch of dense aftershock seismicity (Figure 3a).

Concurrent with the rupture initiation represented by E1–E2 in the first 50 s, the subevent E3 (τC = 90s, Mw 8.16) 
emerged and continued for ∼180 s. E3 contributes the most seismic moment of the South Sandwich Island earth-
quake, and its moment rate function (Figure 3d) has a remarkably smaller aspect ratio (peak moment rate over 
duration, 1.2 × 1017 N-m/s2) than regular subevents E1–E2 (average of 3.3 × 1017 N-m/s2). As a Haskell source, 
E3 initiates close to the locations of E1–E2, and unilaterally propagates toward the south with a slow velocity 
(∼1 km/s) and a long fault length (∼180 km). E3 is located at 14 km depth with an uncertainty of ±5 km (Fig-
ure 3b), and it has a very shallow-dipping thrust mechanism (strike/dip/rake = 134°/4°/22°), although the strike 
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and rake angles are not well constrained due to the shallow dip angle (Figure S9 in Supporting Information S1). 
The shallow slow slip of E3 presumably transfers the stress along the slab, which explains the downdip dense 
aftershock seismicity as well as the triggered outer-rise earthquakes (Figure 3).

The rupture terminated with the final two subevents E4 (τC  =  195s, dC  =  26s, Mw 7.6) and E5 (τC  =  226s, 
dC = 50s, Mw 7.7) at 250–300 km south of the epicenter. They occurred about 3 min after the rupture initiation. 
E4 and E5 are also shallow dipping thrust subevents (average strike/dip/rake = 206°/23°/106°), but their strike 
angles are ∼50° rotated clockwise from E1–E2. This rotation is consistent with the geometry of the curved South 
Sandwich Island trench. Their locations are close to the downdip high-density aftershock patch (Figure 3). This 
spatial pattern is similar to that for the other two major slip asperities (E1–E2 and E3). The depth of E4 (25 km) 
is significantly deeper than E5 (9 km), indicating coexisting megathrust slip at different depth domains. Moment 
rate functions of E4-E5 display similar aspect ratios (average of 5.3 × 1017 N-m/s2) to E1–E2, indicating that E4 
and E5 are, unlike E3, more like regular ruptures.

The low aspect ratio, slow rupture velocity, overall shallow depth, and shallow-dipping mechanism of E3 suggest 
that it is a “slow earthquake” at the shallow subduction interface. This feature can be most prominently demon-
strated in Figure 4. The regular subevents E1, E2, E4, and E5 contributed almost all of the short and intermediate 
period waveforms, while E3 barely excited short and intermediate period signals (Figures 4a–4c and S10 in Sup-
porting Information S1). In contrast, E3 generated large long-period waves, comparable to the sum of all other 
subevents (Figure 4d, Figure S10 in Supporting Information S1). The diminished short period excitation explains 
the smaller-than-average mB and MS of E3 (Figure 2).

Figure 3. Rupture process of the South Sandwich Island sequence. (a) Subevent locations (red dots) and focal mechanisms (red beachballs). Yellow star indicates the 
hypocenter, collocated with the first subevent E1. The red contours show 95% confidence limits of the subevent locations. The gray arrow at E3 indicates its rupture 
directivity, and its length reflects rupture length. The black contour at the arrow end shows the 95% confidence limit of the rupture length and direction of E3, assuming 
the back end as the starting point. The aftershock density is displayed by the blue background color. The inset box shows the summation of subevent moment tensors. 
(b) Marginal probability distributions of subevent centroid depths. Gray circles show the final depths. (c) Representative data (black) and synthetic (red) waveform fits 
for teleseismic P and SH waves (0.005–0.05 Hz), vertical component intermediate period (0.002–0.02 Hz) and long period regional (0.002–0.0033 Hz) full waves. The 
numbers leading the traces are azimuths and distances. (d) Moment rate functions for all subevents. The black circles indicate subevent centroid times. The dark arrows 
point to two NEIC event origin times. Gray squares and blue diamonds indicate centroid times of the GCMT and W-phase solutions, and the underneath solid lines 
denote the corresponding source durations.
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Figure 3d compares the overall rupture sequence determined by our multiple subevent inversion with the events 
determined by other methods. The sequence starts with E1 which is the foreshock (NEIC1). The long duration 
subevent E3 connects the short duration subevents E1–E2 at the beginning and E4–E5 at the end, forming a 
continuous megathrust rupture process. This approximately corresponds to the unusually long-duration GCMT1 
(Mw 8.3) in the middle of the rupture extent (Figure 1). The GCMT2 (Mw 7.9, half duration = 24 s), with the 
centroid time 48 s later than GCMT1 probably overlaps with GCMT1 in time, and roughly corresponds to E4-
E5 at the southern tip with rotated strike angles (Figure 1). The W-phase solution, which is similar to the NEIC 
Mww, probably represents a very long-period component of the latter half of the sequence (Figure 1, Figure S2 in 
Supporting Information S1).

4. Discussion and Conclusions
The 2021 South Sandwich Island (Mw 8.2) earthquake is a complex multiple event, including a slow subevent E3 
connecting other regular thrust subevents at the beginning and the end. The slow subevent E3 contributes over 
70% of the total seismic moment of the sequence. The large moment and the relatively shallow depth of E3, with 
weak short-period seismic radiation, make this sequence as a whole look like a tsunami earthquake. The total 
duration of the whole sequence (E1 to E5) is about 260 s; thus, the centroid time shift, 130 s, estimated from 
the half duration is anomalously long on the centroid time delay versus Mw scaling relation obtained by Duputel 
et al. (2013), as shown by Figure 5. The 2002 Guerrero earthquake (Kostoglodov et al., 2003) and the 2006 Java 

Figure 4. Waveform contributions from two groups of subevents. The observed data for all stations are plotted together in black lines. The total contribution from 
regular subevents E1, E2, E4, E5 are in red lines. The synthetics of the slow subevent E3 are indicated by blue lines. (a) P waves. (b) SH waves. (c) Intermediate period 
(0.002–0.02 Hz) and (d) long period (0.002–0.0033 Hz) regional full waveforms.

0 100 200 300

Time (s)

(a)
Tel P

0 100 200 300

Time (s)

(b)
Tel SH

0 500 1000 1500

Time (s)

(c) Reg (T>50s)

0 500 1000 1500

Time (s)

(d) Reg (T>300s)

obs

E3

E1+E2+E4+E5



Geophysical Research Letters

JIA ET AL.

10.1029/2021GL097104

7 of 8

earthquake (Ammon et  al.,  2006), both of which are slow tsunami earth-
quakes, share a similar trend on Figure 5. Thus, the South Sandwich Island 
earthquake appears to be a hybrid of deep rupture and slow tsunamigenic 
slip; this explains the somewhat unusual combination of the relatively large 
depth and the globally observed tsunami.

Although the shallowest subduction interface is often considered seis-
mically inactive due to the velocity-strengthening frictional properties 
(Scholz, 1998), some large tsunami earthquakes were found to host major slip 
at near-trench depths (Kanamori & Kikuchi, 1993; Lay et al., 2011). Lower 
upper plate rock rigidity at shallow depths has been illustrated to produce tsu-
nami earthquake-like properties, including depleted short period seismic en-
ergy and slow rupture (Bilek & Lay, 1999; Sallarès & Ranero, 2019; Sallares 
et al., 2021), which well explains our observations for E3, suggesting the sub-
duction zone geologic conditions could largely impact the tsunami potential. 
However, the slow component of the South Sandwich Island earthquake may 
have a broader depth extent than the traditional tsunami earthquakes. The 
slow subevent E3 has an overall shallow centroid depth of 14 km, which ex-
plains its global-spreading tsunamis and the two large (∼Mw 7) outer-rise af-
tershocks (Figure 1) due to the possible stress transfer at shallow subduction 
interface (Sladen & Trevisan, 2018). However, it is probably not confined 
in the near-trench depths like other tsunami earthquakes, but could have ex-
tended to deeper domains, which is consistent with absence of observation of 
devastating tsunami. The deeper slip could trigger slow rupture by dynamic 
weakening (Ma, 2012; Noda & Lapusta, 2013), making the slip span over a 
broad depth range. However, the detailed depth-dependent slip distribution 
of the slow subevent remains unclear and difficult to resolve, because of the 
tradeoff between seismic moment, dip angle and depth (Tsai et al., 2011). 
This requires further investigations.

In summary, the 2021 South Sandwich Island Mw 8.2 earthquake involves a complex depth-varying rupture 
process. The complex interaction of deep regular slip and shallow slow subevent explains the somewhat contra-
dicting combination of the deep subevents, the tsunami earthquake-like features with diminished short-period 
seismic radiation and the global-spreading tsunamis. This highlights the importance of accurately mapping the 
slow components of megathrust earthquakes over a broad frequency band for reliable tsunami warning.

Data Availability Statement
All figures are plotted using GMT (https://www.generic-mapping-tools.org/) and MATLAB (http://www.math-
works.com/) software. Seismic data are available on the IRIS Wilber 3 page (https://ds.iris.edu/wilber3/find_sta-
tions/11455082). Tide gauge data are available on the IOC sea level page (http://www.ioc-sealevelmonitoring.
org/list.php).
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