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Extracting Dispersion Curves From Ambient Noise
Correlations Using Deep Learning

Xiaotian Zhang, Zhe Jia, Zachary E. Ross , and Robert W. Clayton

Abstract— We present a machine learning approach to clas-
sify the phases of surface wave dispersion curves. Stan-
dard frequency-time analysis (FTAN) analysis of seismograms
observed on an array of receivers is converted into an image,
of which each pixel is classified as fundamental mode, first
overtone, or noise. We use a convolutional neural network
(U-Net) architecture with a supervised learning objective and
incorporate transfer learning. The training is initially performed
with synthetic data to learn coarse structure, followed by fine-
tuning of the network using approximately 10% of the real data
based on human classification. The results show that the machine
classification is nearly identical to the human picked phases.
Expanding the method to process multiple images at once did not
improve the performance. The developed technique will facilitate
the automated processing of large dispersion curve data sets.

Index Terms— Convolutional networks, deep learning, disper-
sion curves, surface waves.

I. INTRODUCTION

THE inversion of surface waves has become a standard
method for determining the near-surface shear velocity.

One reason for this is that surface waves can be relatively
easily extracted from ambient noise correlations and hence
are not dependent on a suitable distribution of earthquakes.
Another reason is that surface waves only require coverage
over a 2-D plane and not a 3-D volume, which is what would
be required for body waves (S-waves), which are difficult to
extract from ambient noise correlations. This becomes impor-
tant when dealing with dense seismic arrays that typically have
a short deployment time.

The method usually consists of three steps, with the first
being the determination of dispersion curves, which are mea-
surements of the velocity as a function of frequency. Once this
is done, a tomographic method is used to convert these line
measurements into maps of the phase or group velocity as a
function of frequency [1]. The final step is to then convert
velocity as a function of frequency at each (x, y)-point, to
velocity as a function of depth, thus making a 3-D model of the
subsurface velocity. In this article, we will focus on applying
machine learning to the first step in the process—determining
the dispersion curves.
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A commonly used procedure to extract the dispersion curves
is the frequency-time analysis (FTAN) method [2], [3], in
which the correlated signal between two stations is filtered
by a sequence of zero-phase narrowband filters to determine
the travel time of the surface waves as a function of frequency.
Knowing the separation distance of the stations allows these
measurements to be converted into phase velocity. If the
envelope of the signal is used instead of the seismograms
themselves, then the group velocity is determined.

At a given frequency, there may be a number of modes
present which correspond to different eigenfunctions (depen-
dences with depth). The fundamental mode is the slowest
mode with the overtones increasing in velocity as the eigen-
functions penetrate deeper in depth. A key part of determining
the dispersion curve is “picking” the travel time or equivalently
the velocity since the distance is known. This is similar to the
problem of picking P- and S-waves in determining earthquake
locations, but here, the various surface wave modes need to
be classified for the inversion process. We typically pick the
fundamental and first-overtone modes, and occasionally the
second-overtone modes if it can be seen. The more that are
picked, the better the resolution of the resulting shear velocity
model.

Picking the dispersion curves is very labor-intensive, par-
ticularly when dealing with dense arrays. The motivation for
automating this procedure is not only the large volume of
data that are now available (an example of which is shown
in Fig. 1) but also the increased precision that is now required
because of the density of stations. The process can be machine-
assisted by defining target zones for the curves, but the
output needs to be checked and adjusted because of spurious
noise within these zones. Developing an automatic method to
determine the dispersion curves is the subject of this article.

In recent years, deep learning has become the state of
the art in numerous areas of artificial intelligence, which
has quickly translated into major advances within seismology.
Such applications include detection and picking of seismic
waves [4], [5], signal denoising [6], and phase association [7].
Recently, Hu et al. [8] developed an end-to-end convolutional
network approach for predicting 1-D velocity profiles directly
from surface wave dispersion curves. These problems can all
be cast as supervised learning objectives and benefit from
the wealth of labeled data sets that exist in the seismological
community. They bear structural similarities to that of disper-
sion curve picking, motivating the application of deep neural
networks.
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Fig. 1. Location and correlations. (Left) Location of the industry arrays (shaded polygons) and the SCSN broadband stations (black circles). (Right) Long
Beach array with 5300 stations (red dots) and the broadband station LGB (big red dot) that are used to create the correlations. The correlations are done for
approximately 500 h and are bandpassed 0.1–3.0 Hz.

In this article, we develop a deep learning approach to
the dispersion picking problem with the goal of classifying
tentative picks as fundamental mode, first overtone, or noise.
Our approach uses deep convolutional networks to learn a low-
dimensional representation of the data that can be used for
pixelwise segmentation of dispersion curves. We show that
our approach can reliably and efficiently classify picks, which
will greatly facilitate the automated processing of large seismic
data sets.

II. DATA: REAL AND SYNTHETIC

In this article, we use data from a temporary dense seismic
network of 5340 stations in Long Beach, CA, USA [9] that
were originally used for an exploration survey conducted by
an oil company. The broadband station LGB is part of the
permanent earthquake monitoring array in the region (Southern
California Seismic Network) and is cross-correlated with this
array to form 5340 station pairs, from which we wish to
determine the dispersion curves. The geometry of the array
and a sample cross correlation are shown in Fig. 1. The
FTAN method was applied to each correlation pair for a
range of frequencies between 0.2 and 5 Hz to construct
the images of dispersion curves. The bandpass filter is a
Gaussian filter H (ω) = exp(−α(ω − ω0)

2/ω2
0) where we set

the filter parameter α = 25 for a compromise between the
narrowband assumption and filtering robustness. These were
then handpicked (labor-intensive) to create a set of labeled
dispersion curves.

To limit the amount of labeled data required to train a
model to pick dispersion curves, we designed an approach
to generate realistic synthetic training data, with the ultimate
goal of applying a second stage of real data training to the
model. To generate synthetic dispersion curves, we started with
a 1-D layered velocity model (Fig. 2) that matched the average
dispersion curve for the region of the survey. This function
was then perturbed both in velocities and layer thicknesses
by a random amount up to 10% of the original velocity
function, forming an ensemble of different velocity models.
The random variations on the layer thicknesses and velocities
for this ensemble were drawn from a uniform distribution
that centered at the starting 1-D velocity model. For each
instance, the dispersion curves were determined by a numerical
solution of the eigenproblem [3], [10]. The resulting curves
were then altered by random variations of up to ±2.5%
in the frequencies and velocities and by adding random
noise to the curves. In total, 100 000 synthetic curves were
generated.

For our real data set of 5340 station pairs, we set aside
4340 of the curve images to be used as a testing set, and
the rest (1000) were used as a training set. In a production
environment, we would hand-label only the 1000 training
images and allow the algorithm to determine all remaining
4340 correlation pairs (testing set) without intervention. Here,
we need to hand-label even the testing set in order to assess
our model’s final performance. Note that we train on real data
after we have a model trained on synthetic data.
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Fig. 2. Velocity model. The P- and S-wave models used to construct the
synthetic training set are shown along with the variations in velocity and layer
depths.

The synthetic and real dispersion curves are first pre-
processed into image representations to make them suitable
for the U-Net architecture. Initially, each curve is a collection
of points with (frequency, velocity, and amplitude) values
such as shown in Fig. 3. Each point also has an associated
label from one of the three classes: fundamental mode, first
overtone, and noise. We detrend each curve in the frequency–
velocity domain and transform the frequency axis into the
logarithmic domain to get a more reasonable distribution—
see Fig. 3 to see that points are more concentrated on the
left of the plot (shorter period). Then, we create a 64 × 64
pixel grayscale image with pixel values between 0 and 255
representing the amplitude (see Fig. 3). To map individual
points to the pixels, we treat each pixel as a discretized bin and
fill its grayscale value as the amplitude of points that fall into
the bin after integer-rounding. Note that the rounding process
occurs after logarithmic transform for the x-axis (periods) and
detrending for the y-axis (group velocities). The detrending
process utilizes the points from all of the stations, including
the test stations, but does not use any ground-truth data. These
variable transforms are done to more evenly spread points
across the final grayscale image, thus reducing computational
requirements. The ground-truth labels for each point of the
dispersion curves are mapped to individual pixels by the same
process. In the case that two points on the dispersion curve
map onto the same pixel, and their labels conflict, we choose
to label both as noise since curve fitting is more severely
impacted by erroneous points than by missing points.

III. METHODS

A. Overview

Our approach to picking dispersion curves uses deep convo-
lutional networks in a supervised manner to perform pixelwise
segmentation of the images. It consists of two main steps:
1) a U-Net architecture is trained first on the entirely synthetic
data set to learn coarse features and 2) the best model is then

fine-tuned to the limited amount of real data using a two-stage
training approach. In the following, we describe each of these
steps in detail.

The use of convolutional networks is well-motivated by the
structure of our data, as the dispersion curve images exhibit a
spatially coherent geometric structure [11]. Our problem is
set up as one of the fully supervised image segmentation
since we have pixelwise labels for all images. The model
used in this study is the U-Net architecture [12], which is a
deep convolutional network that has been successful for image
segmentation tasks. In particular, the network applies a series
of convolution and pooling layers to an input image to learn a
sparse representation of it and then applies a series of transpose
convolution layers to finally output an image with the same
lateral dimensions as the input. The depth of the output image
is equal to the number of classes, which in our case is 3:
fundamental mode, first-overtone, and noise.

Fig. 4 provides a summary of the model used in this study.
The network takes in a 64 × 64 × 1 image and outputs
a stack of three images of equivalent dimension, with a
softmax activation function applied to the outputs. In our case,
the output of the neural network is a 64 × 64 × 3 array,
with each pixel having three probabilities—noise, fundamental
mode curve, and first overtone curve—associated with it. An
example of an input image and the corresponding labels are
shown in Fig. 5 (top).

To overcome the discretization error due to the 64 × 64
pixelization of the images, we utilize the picks on pixels
by finding the corresponding closest frequency–time energy
peaks in the original FTAN maps. To do this, we first use
our mapping from “point in period-velocity space” to “pixel
coordinate,” and then for each pixel that we labeled as “funda-
mental pick” or “first-order pick,” we find the corresponding
period-velocity space coordinate and search for the largest
amplitude point in the vicinity.

The reason that we do a search is that if we were to use the
64 × 64 picks directly without searching, we would end up
with a maximum of only 64 possible values on both the x- and
y-axes, which is an unnecessary source of error. This could
be ameliorated by using 128 × 128 or more pixels, but this
would increase the computational requirements by a factor of
4 and would never reach the granularity of finding the original
coordinates.

B. Convolutional Neural Network Training

Starting the training process using data from a simulation
(a sim2real approach) avoids the need for extensive human
labeling. We set aside 10% of the synthetic images for model
validation purposes and train the network on the remainder
using the Adam optimizer [13] using the minibatches of
size 32. After each epoch of training, we check the model’s
performance on the 10 000 unseen images in the validation set.
If performance does not improve for 3 epochs in a row, we
save the model after the best epoch.

Next, we proceed to fine-tune the best model on the syn-
thetic data to the real Long Beach data using a two-stage
training approach. Of the 5340 images from the Long Beach
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Fig. 3. Example of a dispersion curve generated from FTAN for the path shown in Fig. 1 that has been hand-labeled. Red circles: fundamental picks. Blue
circles: first-order picks. Empty circles: noise. The size of each circle is proportional to its amplitude. The waveform is the raw data from a single row of
Fig. 1 (right), rotated by 90◦. (Right) Pixel representation with logarithmic period axis and the group velocity’s linear trend removed.

Fig. 4. Cartoon flowchart of how our data is processed throughout this article. In the plots, the [X, Y, Size] axes represent [Period (s), Group Velocity (km/s),
Amplitude], respectively. The center of the figure represents the convolutional neural network (CNN) structure that we employed. The goal of this article is
to take in a noisy plot and pick out points inside it that belong to the fundamental (red) and first-order (blue) overtones while discarding everything else as
noise.

data set, we take a random subset of 1000 images for use
in two-stage training. Of these 1000 images, 100 are used for
validation (checking when to stop training the model) and 900
are used for updating model weights, which results in a 90%–
10% train–validation split. For these 1000 images, we followed
the same training procedure as with the synthetic data. The
remaining 4340 stations are reserved for evaluation of our
models—we pretend that we have no access to their correct
labels until after the final model is saved, as they are used only
to determine whether our method is suitable for real usage.

Example output predictions are shown in Fig. 5 along with
the raw feature input and labels. It is clear that the model
performs well for this examined image, correctly recovering

nearly all fundamental and first overtone picks. Quantitative
performance results on the validation set are provided in Fig. 6,
where precision and recall are computed for each of the three
classes. The noise class has the highest precision and recall
of the three classes (>99%), which probably reflects the fact
that the composition of the training data set is heavily skewed
toward the noise. The fundamental and first-order modes
have around 99% and 98% median precision, respectively,
demonstrating that the model can accurately classify individual
pixels. The median recalls for these classes are about 95% and
94%, respectively. The application of ML to this problem can
substantially reduce the human labor in analyzing surface wave
data.
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Fig. 5. Results for different algorithms. (Top left) Input data, which are converted to grayscale pixels. (Top right) Handpicked classification of the dispersion
curves. (Bottom left) Convolutional network prediction of labels using only one station input. (Bottom right) Results using gight stations input. Note that this
station’s Ground Truth panel is never seen by the CNN models—it is shown just for comparison and evaluation.

Fig. 6. Precision and recall. Median precision and recall compared with the number of stations presented to the neural network simultaneously. N = 23 (top
10% of N = 239 models in validation error) of synthetically trained and then Long-Beach trained models. Variations are due to the changes in random seed
for the model training, which changes the weight initializations and the order of training data shown.

C. Multistation Input

The analysis described earlier was done for each station
pair. We also explored the possibility of including neighboring
stations into the feature set to better facilitate separation of
genuine signal from noise. While the velocity structure may

vary between different pairs, here, we assume that these
changes are small enough that the general characteristics
from one dispersion curve to another are overall similar. The
motivation is to use all of the available information together
to make a decision, rather than examining one station pair at
a time.
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Fig. 7. Results for Long Beach Example. Shown are the group velocity maps for the Long Beach data using the machine learning approach (column 1)
and manual approach (column 2). Row 1 contains the discretized predictions, in which group velocity can take on only 64 values—these are what the model
trained on. Row 2 uses a postprocessing scheme (Methods, Section-A) to search for the original point, so no discretization error exists. The third column is a
histogram of differences between the ML and manual picks. The two types of processing produce nearly identical results indicate that the machine learning
approach is working as desired.

To do this, we include the images for K nearest neighbor
stations by concatenating them in the depth dimension to
create a 3-D input volume. Thus, the inputs are 64 × 64 × K .
We repeat the entire training procedure starting from gen-
erating synthetic data, including the real data training. An
example of a model using K = 8 is shown in Fig. 5,
which can be compared with the results for the K = 1
model seen previously. Fig. 6 shows the median performance
while increasing K from 1 to 8. After accounting for the
variability introduced by the stochastic nature of the training
process (examining the 107 best training runs out of 215
total), we find that the performance does not improve sig-
nificantly when adding in additional stations. We hoped that
noise seen in one station might not be seen in a neighbor-
ing station, so a neural network might be able to combine
multichannel information to determine that this idiosyncratic

noise is indeed noise. However, this unfortunately is not the
case.

IV. DISCUSSION

The approach developed in this article provides a tool to
train deep neural networks to perform dispersion curve picking
using a hybrid simulation + real data scheme. The two-stage
training enables the neural network to learn coarse features
from the simulation data that are also present in the real
data, with the benefit that as much simulated data can be
generated as needed. By then fine-tuning the model to the real
data, the network learns finer scale features that are unique
to these data while only needing a relatively small amount
of it. Here, we showed that just 1000 images are enough to
adapt the initial model to the real data, although if more is
available, the performance may improve further. This type of
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sim2real approach will likely be relevant to other problems in
seismology where labeled data can be initially obtained from
simulations.

We expect that the developed approach will be valid for
many types of arrays and velocity structures, although it
is likely that the model will need to be trained separately
for each region or data set of interest. This is because we
expect the velocity structure and network geometry to vary
significantly between data sets, making it harder to generalize.
Our approach, being designed to use synthetic data for the first
stage of training, helps to minimize the amount of new (real)
training data needed.

The approach in this article was designed to automate the
picking process. This differs from the approach of Hu et al. [8],
which performs an end-to-end prediction of a velocity depth
profile given an input image. One of the distinguishing features
between these approaches is that our method focuses only on
making precise picks. These can then be used with standard
geophysical inverse techniques, providing greater control over
the velocity model solutions, via regularization, as well as
direct interpretability of the obtained velocity model since the
physical equations are used in solving the inverse problem
mapping picks to velocity.

We attempted many tweaks to the model hyperparameters
as well as the randomization of workflow (same synthetic
model + many real models, many synthetic models + many
real models, varying learning rates, varying image dimensions,
fixed versus variable terminating epoch numbers, zero-padded
empty channels versus completely deleted empty channels,
changing the probability threshold for picks, and so on) but
failed to see any meaningful increase in performance as we
increased station count. Therefore, it appears that there is no
need to use more than one station for the proposed method,
which also requires the least amount of training data.

We also tried to frame the problem as one of sequential
classification, treating the picks as a sequence rather than
converting to an image and using bidirectional gated recurrent
units (similar to Ross et al. [4]). The sequences of floating-
point tuples (period, group velocity, and amplitude) directly
extracted from the FTAN analysis were sorted by amplitude
and presented to the neural network. This approach did not
perform nearly as well as the convolutional network approach
described earlier.

As for the generalization ability of the model, performance
on very geographically sparse data has not been tested. The
method described here is designed for dense seismic networks
in a localized area, such as the arrays shown in Fig. 1, where
there are over 16 000 stations. It is not likely to work every
well for sparse measurements in an area with a rapidly varying
subsurface structure. In the case of multiple geographic clus-
ters of stations, it is advised to hand-label training station data
that are randomly sampled from each cluster, as opposed to
directly using the model trained entirely from one cluster for a
different cluster. This method mainly serves to reduce human
work, rather than a pretrained model that will work on every
geographic location without further training. If the stations are
sparsely scattered, performance is expected to degrade relative
to our dense array scenario.

To use our model’s picks and see its geographical impor-
tance, we plotted in Fig. 7 a group velocity map for our test set
(no training stations are plotted) and place it side-by-side with
the same plot generated from our manual picks. Each dot rep-
resents a station’s group velocity at the T = 1.5 s period, mea-
sured over the entire path from the LGB broadband station to
the local array station—see Fig. 1 for the path. We compare the
two versions by taking a difference and plot the results on the
same figure as well. We can see that the differences between
the model and the manual versions are small and few in num-
ber, which agrees with the precision/recall data from Fig. 6.

V. CONCLUSION

We have developed a machine learning method for extract-
ing dispersion curves from velocity–frequency images. The
procedure was training with a combination of synthetic exam-
ples and labeled real data. Testing on real data shows that the
method works with a median per-class precision of at least
98% and a per-class recall rate of at least 94%. We achieved an
80% reduction in human labor using this extraction technique
on a data set of 5340 curve sets and expected this efficiency
to improve further if applications on future data sets start with
this pretrained model. The value of this method is its ability
to be applied in bulk and will be more apparent as more data
sets are used.

With this new method to classify points for dispersion curve
fitting, it is now possible to ingest large volumes of recorded
sensor data with minimal human input and then systematically
calculate travel times, as shown in Fig. 7. Previously, this
data ingestion step for each data set would take hours of
human work consisting of point selection by heuristics and
experience, but it can now be taken care of with a pipeline
designed to separate noise from dispersion curve.
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